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Deterministie Problems

1:1. Inireduciion

The use of high-speed digital computers not only allows more computations to
be made than ever before, it makes practicable methods of solution too repeti-
tious for hand calculation. In the past much effort was expended to analytically
manipulate solutions into forms which minimized the computational effort. It is
now often more convenient to use computer time to reduce the analytical effort.
Approximation techniques, once considered a last resort, can be carried to such
high orders on computers that they are for most purposes as good as exact
answers. They also permit treatment of problems not solvable by exact methods.

This text has been written to provide a unified treatment of matrix methods
for computing the solutions to field problems. The basic idea is to reduce a
functional equation to a matrix equation, and then solve the matrix equation by
known techniques. These concepts are best expressed in the language of linear
spaces and operators. However, it is not necessary that the reader have prior
knowledge of this theory, because we shall define and illustrate the concepts as
they are introduced. A brief summary of linear spaces and operators is given in
Appendix A. Detailed expositions may be found in many textbooks [1-3].}

In this chapter we consider equations of the inhomogeneous type

Lf)=g (1-1)

! Bracketed numbers refer to the References at the end of each chapter.
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where L is an operator, g is the source or excitation (known function), and [ is
the field or response (unknown function to be determined). By the term deter-
ministic we mean that the solution to (1-1) is unique; that is, only one fis asso-
ciated with a given g. A problem of analysis involves the determination of f when
L and g are given. A problem of synthesis involves a determination of L when f
and g are specified. In this text we consider only the analysis problem.

This chapter presents the basic mathematical techniques for reducing func-
tional equations to matrix equations. A unifying principle for such techniques is
found in the general method of moments, in terms of which most specific solutions
can be interpreted. We shall consider a deterministic problem solved once it is
reduced to a suitable matrix equation, since the solution is then given by matrix
inversion. Most computers have subroutines available for matrix inversion,
which is a relatively simple operation. For reference, the widely used Gauss-
Jordan method is given in Appendix B.

The examples of this chapter are simple, chosen to illustrate the theory with-
out clouding the picture with physical concepts or complicated mathematics,
However, when these methods are applied to problems of practical interest the
procedures are not so simple, The details vary according to the type of problem,
and can be illustrated only by treating a variety of problems. For this reason we
treat many specific problems in the subsequent chapters. It is hoped that these
examples will not only allow the reader to solve similar problems, but will
suggest extensions and modifications to treat other types. Although most of the
examples are taken from electromagnetic theory, the procedures are general and
apply to field problems of any kind.

1-2. Formulation of Problems

The general methods of solution will be discussed in the notation of linear spaces~
and operators, and hence specific problems should be put into this notation.
Given a deterministic problem of the form L(f) = g, we must identify the opera-
tor L, its domain (the functions f on which it operates), and its range (the func-
tions g resulting from the operation). Furthermore, we usually need an inner
product {f, g, which is a scalar defined to satisfy?

Lfg>=1<a.0> (1-2)

{af + Bg, h) = alf, h) + P<g, h) (1-3)
S5fr=>0  iff#£0

=0 iff=0

(1-4)

3 The usual definition of inner product in Hilbert space corresponds to <f*, g» in our notation.
For this text it is more convenient to show the conjugate operation explicity wherever it occurs,
and to define the adjoint operator without conjugation.
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where o and f are scalars and * denotes a complex conjugate. We sometimes
need the adjoint operator L* and its domain, defined by

(Lf,g> =<[. g’ (1-3)

for all fin the domain of L. An operator is self~adjoint if L* = L and the domain

of L* is that of L.
Properties of the solution depend upon properties of the operator. An opera-
tor is real if Lfis real whenever fis real. An operator is positive definite if

(fYLf>>0 (1-6)

for all £ # 0in its domain. It is positive semidefinite if > is replaced by = in (1-6),
negative definite if > is replaced by < in (1-6), etc. We shall identify other prop-
erties of operators as they are needed.

If the solution to L(f) = g exists and is unique for all g, then the inverse
operator L' exists such that

f=L"(g) (1-7)

If g is known, then (1-7) represents the solution to the original problem. How-
ever, (1-7) is itself an inhomogeneous equation for g if fis known, and its solution
is L{f) = g. Hence L and L™' form a pair of operators, each of which is the
inverse of the other. _

Facility in formulating problems using the concepts of linear spaces comes
only with practice, which will be provided by the many examples in the following
chapters. For the present, let us consider a simple abstract example so that
mathematical concepts may be illustrated without bringing physical concepts
into the picture.

Example. Given g(x), ﬁnd_ f(x) in the interval 0 < x < | satisfying

d F
~F =0 (1-8)
JO)=f(1)=0 (1-9)
This is a boundary-value problem for which
d!

The range of L is the space of all functions g in the interval 0 < x < 1 that we
wish to consider. The domain of L is the space of those functions fin the interval
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- 0 £ x < 1, satisfying the boundary conditions (1-9), and having second deriva-
tives in the range of L. The solution to (1-8) 15 not unique unless appropriate
boundary conditions are included. In other words, both the differential operator
and its domain are required to define the operator.

A suitable inner product for this problem is

o0 = [ Sae) dx (1-1)

It is easily shown that (1-11) satisfies the postulates (1-2) to (1-4), as required.
Note that the definition (1-11) is not unique. For example,

[ W () d (1-12)
[i]

where w(x) > 0 is an arbitrary weighting function, is also an acceptable inner
product. However, the adjoint operator depends on the inner product, which can
often be chosen to make the operator self-adjoint.

To find the adjoint of a differential operator, we form the left side of (1-3),
and integrate by parts to obtain the right side. For the present problem

oy = (- 55)s s

tdfdg , _[df 7'

:fxdx E;g]

L d’g dg df]
_juf(_EF)dH[ =g (1-13)

The last terms are boundary terms, and the domain of L® may be chosen sﬁ that
these vanish. The first boundary terms vanish by (1-9), and the second vanish if

g0)=g(1)=0 (1-14)
It is then evident that the adjoint operator to (1-10) for the inner product (1-11) is

d]
P=L=-— 1-15
73 (1-15)

Since L* = L and the domain of L® is the same as that of L, the operator is self-
adjoint,
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Sec. 1-3] Method of Moments 5

It is also evident that L is a real operator, since Lf is real when fis real. That
L is a positive definite operator is shown from (1-6) as follows:

L) = II‘( If)dx

(L [d

i S
=J'u I%I dx (1-16)

Note that L is a positive definite operator even if fis complex.
The inverse operator to L can be obtained by standard Green's functmn
techniques.® It is

1
L™ Y(g) = _L G(x, x")g(x") dx’ (1-17)

where G is the Green's function

x(1 - x") x<x'
G(x, x") = (1-18)
(1—x)x' x>x

We can verify that (1-17) is the inverse operator by forming ' = L™'(g), differ-
entiating twice, and obtaining (1-8). Note that no boundary conditions are
needed on the domain of L™', which is characteristic of most integral operators.
That L™! is self-adjoint follows from the proof that L is self-adjoint, since

{Lf1, f2) =<9, L 'g2) (1-19)

Of course, the self-adjointness of L™! can also be proved directly. It similarly
follows that L™ ! is positive definite whenever L is positive definite, and vice versa.

1-3. Method of Momenis

We now discuss a general procedure for solving linear equations, called the
method of moments [4,5]. Consider the inhomogeneous equation

Lf)=g (1-20)

3 See, for example, reference [2], Chapter 3.
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where L is a linear operator, g is known, and f is to be determined. Let f be
expanded in a series of functions f, /5, f3, - .. in the domain of L, as

S=3 . (1-21)

where the =z, are constants. We shall call the f, expansion functions or basis
Junctions. For exact solutions, (1-21) is usually an infinite summation and the -
f, form a complete set of basis functions. For approximate solutions, (1-21) is
usually a finite summation. Substituting (1-21) in (1-20), and using the linearity
of L, we have

T allf) =g (1-22)

It is assumed that a suitable inner product {f, g has been determined

for the problem. Now define a set of weighting functions, or testing functions,
Wy, W3, Wy, ... in the range of L, and take the inner product of (1-22) with
each w,. The result is

2, 0 Wy L) = (Wp, g (1-23)

m = 1,2,3,....This set of equations can be written in matrix form as

[laldl2t,] = [ga] (1-24)
where
{wy, Lfy>  {wy, Ly ...
[lead = | w2, Lf;> <wi, Lf;y ... (1-23)
.EI. {WI,H}
)= || o= [M® (1-26)

If the matrix [/] is nonsingular its inverse [/ ~ '] exists, The «, are then given by
(%] = [121]0g..] (1-27)
AR

and the solution for f is given by (1-21). For concise expression of this result,
define the matrix of functions

[fn]=[f1 f: f;'- ] “'ﬂ}
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and write

f=[fl=,] = [£[nd 1[g0] (1-29)

This solution may be exact or approximate, depending upon the choice of the
f, and w,. The particular choice w, = f, is known as Galerkin's method [6,7].

If the matrix [/] is of infinite order, it can be inverted only in special cases, for
example, if it is diagonal. The classical eigenfunction method leads to a diagonal
matrix, and can be thought of as a special case of the method of moments. If the
sets f, and w, are finite, the matrix is of finite order, and can be inverted by
known methods (Appendix B).

One of the main tasks in any particular problem is the choice of the f, and
w,. The f, should be linearly independent and chosen so that some superposition
(1-21) can approximate f reasonably well. The w, should also be linearly
independent and chosen so that the products {w,,g) depend on relatively
independent properties of g. Some additional factors which affect the choice of
f. and w, are (1) the accuracy of solution desired, (2) the ease of evaluation of
the matrix elements, (3) the size of the matrix that can be inverted, and (4) the
realization of a well-conditioned matrix [/].

Example. Consider the same equation as in the example of Section 1-2, but
with the specific source g = 1 + 4x*. Hence our problem is

'ng =1+ 4x? (1-30)
J0)=f(1)=0 (1-31)

This is, of course, a simple boundary-value problem with solution

x? x*

f(x)= %x ~3 =g (1-32)

To illustrate the procedure, the problem will be reconsidered by the method of

moments.
For a power-series solution, let us choose

fo=x— x"*! (1-33)

n=1223,..., N, so that the series (1-21) is

J"=. iﬂ.[x - x**") (1-34)

n=]
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Mote that the term x is needed in (1-33), else the f, will not be in the domain of
L; that is, the boundary conditions will not be satisfied. For testing functions,
choose

w,=f,=x—x"*1 (1-35)

in which case the method is that of Galerkin. In Section 1-8 it is shown that the
w, should be in the domain of the adjoint operator. Since L is self-adjoint for
this problem, the w, should be in the domain of L, as are those of (1-35).

Evaluation of the matrices (1-25) and (1-26) for the inner product (1-11) and
L = —d*/dx? is straightforward, and results in

mn

b = {Wp, Lfy> = m (1-36)
B _ m(3m + 8) i
g"_{w"g}_ﬁ[mﬂ}(mn} (1-37)

For any fixed N (number of expansion functions), the a, are given by (1-27) and
the approximation to f by (1-34),

To illustrate convergence, let us consider successive approximations as N is
increased. For N = 1, we have /,, = 1/3, g, = 11/30, and hence from (1-24)
2; = 11/10. For N = 2, the matrix equation (1-24) becomes

bl =)= a9

]
from which the «'s are found as

| _ |15 |
[“1] i £ ] o
For N = 3, the matrix equation (1-24) becomes
s A %y 1]
TER -
1 4] lw) Ui

~ from which the o’s are found as

HRH
i . (1-41)
oy ]

Note that this third-order solution is the exact solution, (1-32). For N = 4 we
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Figure 1-1. Solutions using f, = x — x**! and Galerkin's method.

again obtain the exact solution, and so on for higher N. Plots of the various
solutions are shown in Fig, 1-1.

The reason an exact solution is obtained for this problem is that some com-
bination of the f, can exactly represent the solution, and any N linearly in-
dependent tests must correctly determine the coefficients. If the solution cannot
be expressed as a finite series of the f,, then we continue to obtain approximate
solutions converging to the exact solution in the sense of projections, as dis-
cussed in Section 1-8.

More important than solving any particular equation, the inverse matrix
[/~!] gives a representation of the inverse operator L™ '. Hence we have a solution
(usually approximate) to Lf = g for any g. In physical problems, L represents
the system, g the excitation, and f the response. A determination of the [/™']
matrix therefore gives us a general solution for the system, that is, the response /
for arbitrary excitation g, assuming that g is reasonably well behaved.

The integration involved in evaluating the [, = {w,, Lf,> of (1-25)is often
difficult to perform in problems of practical interest. A simple way to obtain
approximate solutions is to require that equation (1-22) be satisfied at discrete
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points in the region of interest. This procedure is called a point-matching method.
In terms of the method of moments, it is equivalent to using Dirac delta functions
as testing functions. The following example illustrates this in the one-dimen-
sional case.

Example. Reconsider the problem of Section 1-3, stated by (1-30) and (1-31).
Again we choose expansion functions (1-33), so that (1-22) becomes

N d*
Ea:, —E(x—x'“}]=1+d-x1 (1-42)

=l
For a point-matching solution, let us take the points

m
I,.=N—H M=I,2,.‘..,N (143}

which are equispaced in the interval 0 < x < 1. Requiring (1-42) to be satisfied
at each x,, gives us the matrix equation (1-24), with elements

Lo = n(n + 1) (Ef'ﬁ)ﬂ (1-44)
du= s 4(*&'?-_’1')1 (1-45)

Note that this result is identical to choosing weighting functions

W = 0(x — x,) (1-46)
j'-’hl‘-rﬂ &(x) is the Dirac delta function, and applying the method of moments with
inner product (1-11).

To illustrate some numerical results, consider the solution as N is increased.
For N = 1, we have I, = 2, g, = 2, and from (1-27) &, = 1. For N = 2, the

matrix equation is
3 EI-[4] -

from which the «'s are found as

)= [7] 49
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For N = 3, the exact solution (1-41) must again be obtained, since the exact
solution is a linear combination of the f.'s and we are applying N independent
tests. Similarly, for N > 3 we continue to obtain the exact answer for the same
reason. Plots of these solutions differ to some extent from those of Fig. 1-1 but
are qualitatively similar. The point-matching solutions in this case are actually
less acEurate than the corresponding Galerkin approximations, but for low orders
of solution they are usually sensitive to the particular points of match. For high-
order solutions the use of equispaced points normally gives excellent results.

Note that even though the [/] matrices of (1-36) and (1-44) are quite different
in form, they give similar results. There are infinitely many possible sets of basis
functions and of testing functions. Some sets may give faster convergence than
others, or give matrices easier to evaluate, or give acceptable results with smaller
matrices, etc. For any particular problem one of our tasks is to choose sets well
suited to the problem.

1:5. Subsecilonal Bases

Another approximation useful for practical problems is the method of sub-
sections. This involves the use of basis functions f, each of which exists only over
subsections of the domain of f. Then each a, of the expansion (1-21) affects the
approximation of f only over a subsection of the region of interest. This proce-
dure often simplifies the evaluation and/or the form of the matrix [/]. Sometimes
it is convenient to use the point-matching method of Section 1-4 in conjunction
with the subsectional method.

Example. Again consider the problem of Section 1-3, stated by (1-30) and
(1-31). N equispaced points on the interval 0 < x < 1 are defined by the x_, of
(1-43). A subinterval is defined to be of width 1/(N + 1) centered on the x,,. This
is shown for case N = 5 in Fig. 1-2(a). A function which exists over only one
subinterval is the pulse function

Pix)={ . : (1-49)

For N = 35, the function P(x — x,) is shown in Fig. 1-2(b). A linear combination
of f, = P(x — x,) according to (1-21) gives a step approximation to f, as repre-
sented by Fig. 1-2(c). However, for I. = —d?/dx?, the operation LP does not
yield a function in the range of L. Hence the pulse functions cannot be used as
basis functions unless we extend the operator (Section 1-7) or use an approximate
operator (Section 1-6).
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o X, L Xy Xy Xy 1

{a} Points and subintervals

||— Pix - x4}
i i i i i |

0 I, Ty X3 Xy xs I

(b)) Pulse function

1
C I : | i i | |

0 =K i o | T4 *s i
(c]) Step approximation
1 - Tix = x5)
A ] | i
0 x Iy Xy Ty Iy 1

{d} Triongle function

L] IL X3 Iy Xy Ig I

(e} Piecewise linear approximation

Figure 1-2. Subsectional bases and functional approximations.

A better-behaved function is the triangle function, defined as

!
1
i N i—
L-lxl(N+1) ¥ <5
T(x) = | (1-50)
1
2 >S9

For the case N = 5 the function T(x — x;) is shown in Fig. 1-2(d). A linear
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combination of triangle functions of the form

N
f= _g',lm.T(x — Xx,) (1-51)

gives a plecewise linear approximation to f, as represented by Fig. 1-2(¢). For
L = —d?|dx*, the operation LT gives the symbolic function

LT(x — x,) = (N + D[ —d(x — x,_) + 26(x — x,) — 8(x — x,4,)] (1-32)

where (x) is the Dirac delta function. We can use this result in the method of
moments as long as the w, are not also symbolic functions. We cannot use a
point-matching procedure in this case.

To follow through the method of moments, let f, = T(x — x,), that is, use
the expansion (1-51). As testing functions, choose w, = P(x — x,,). For inner
product (1-11), the matrix elements of (1-25) and (1-26) are easily ﬂP]uEtﬂd as

(2(N + 1) m=n
la={—(N+1) |m—n|=1 (1-53)
0 Im —n| > 1

Figure 1-3. Moment solutions using triangles for expansion and pulses for testing. Numbers
adjacent lo points denote arder of solution.
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(1-54)

4m? + (1/3
gt [ B2 1)

“N+1 (N +1)°

Note the particularly simple form of [[]. We shall encounter this form again in
connection with difference equations (Section 1-6).

Figure 1-3 illustrates the convergence of the above solution as N (number of
subsections) is increased. Only the break points of the piecewise linear solution
are shown; the functional approximation is given by straight lines joining these
points. The break points are, of course, also the «,, since they are the peaks of
the triangle-function components.

1-8. Appreximaie Operators

In complex problems it is sometimes convenient to approximate the operator to
obtain approximate solutions. For differential operators, the finite-difference
approximation has been widely used [8]. For integral operators, an approximate
operator can be obtained by approximating the kernel of the integral operator [6].
Any method whereby a functional equation is reduced to a matrix equation can
be intérpreted in terms of the method of moments. Hence for any matrix solution
using approximation of the operator there will be a corresponding moment solu-
tion using approximation of the function.

Example. Let us consider the problem (1-30) and (1-31) by a finite-difference
approximation. This involves replacing all derivatives by finite differences; that

is, for a given Ax, R
2=l (=+3) 1 (=-F)]
Zoilred)re-9]
~ {Ti-}—z [f(x — Ax) = 20(3) + f(x + Ax)]

For our present problem, consider the interval 0 < x < 1 divided into N + 1
segments, with end points x,, as depicted in Fig. 1-2(a). For Ax equal to one
segment, Ax = 1/(N + 1), and a finite-difference approximationto L = —d?|dx?
is

)+ 20~ f(x+775)] @50

Ef:':NJ’l]:[_f(x_ N+1

N+1

Note that L? —+ L as N — co for all fin the domain of L.
We can now apply the method of moments to the approximate equation
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Sec. 1-7] Extended Operators 15
Lif =1 + 4x? (1-37)
subject to boundary conditions f{0) = f{1) = 0. Most commonly this is done by

a point-matching procedure at the x,. The result is a matrix equation of the
form (1-24), where the x«, correspond to f{(x,),

2(N + 1)* m=n

lna = { —(N + 1)* Im—n|=1 (1-58)
0 lm=—mn|>1
m 2
Om =1+ 4(m) (1-39)

Note that the [/] matrix of (1-58) is the same form as that of (1-53) obtained from
a subsectional basis. [The trivial difference in the position of N' 4+ | can be taken
care of by choosing w,, = (N + 1) P(x — x,,) in the solution of Section 1-5.] The
Jm 0f (1-59) and (1-54) are slightly different, and hence the two solutions will be
slightly different. However, as N becomes larger the two g, approach one another,
so the rates of convergence of the two solutions are about the same.

Numerical results for the above solution are similar to those of Fig. 1-3.
Iterative procedures are sometimes used to solve the matrix equations obtained
by difference approximations [9]. However, iterative procedures usually con-
verge slowly, and with high-speed large-memory computers it is often simpler
to invert the matrix. Because of the tridiagonal form of [[], special techniques can
be used to invert it [10].

1-7. Extended Operaiors

Asnoted earlier, an operator isdefined by an operation (forexample, L = —d?/dx?)
plus a domain (space of functions to which the operation may be applied). We
can extend the domain of an operator by redefining the operation to apply to new
functions (not in the original domain) as long as this extended operation does not
change the original operation in its domain. If the original operator is self-
adjoint, it is desirable to make the extended operator self-adjoint also. By this
procedure we can use a wider class of functions for solution by the method of
moments. This becomes particularly important in multivariable problems (fields
in multidimensional space), where it is not always easy to find simple functions
in the domain of the original operator.

Example A. Suppose we wish to use pulse functions for an expansion of fin a
moment solution for the operator L = —d?/dx®. As noted in Section 1-5, these
are not in the original domain of L. However, for any functions w and [ in the
original domain,
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L dw df
{w,Lf> = .,:Txﬁd" (1-60)

obtained from (1-11) by integration by parts. If Lf does not exist, but df/dx does
exist, (1-60) can be used to define an extended operator. This extends the
domain of L to include functions f whose second derivatives do not exist, but
whose first derivatives do exist. It is still assumed that f{0) = f{1) = 0. Actually,
the type of extension represented here is precisely that which gives rise to the
theory of symbolic functions. By using Dirac delta functions in earlier sections
we anticipated this concept of extending the domain of a differential operator.
To apply the method of moments using pulse functions and the extended

operator, let
N
f= Ztnc.ﬁ‘;x —x.) (1-61)
where P are the pulse functions defined by (1-49). For testing functions, let

W = T(x — x,), where T are the triangle functions defined by (1-50). The
elements of the [/] matrix are found using (1-60) as

(2(N + 1) ms=n
-il"= <wn!Lfn}='| _[N+ 1} |M— HI = ] {1"51]
L0 Im—n|=>1

Note that these are identical to the elements (1-53), which were for f, and w,,
reversed from those of the present solution. We could have anticipated this
result because L is self-adjoint. The elements of the [g] matrix are now given by

G = j; T(x — x, )1 + 4x?) dx (1-63)

which yields a result slightly different from (1-54). However, the two g,, approach
each other as N becomes large, and the convergence of the two solutions is about

the same.
Numerical results for the above example are similar to those of Fig. 1-3 for

various N. However, the functional approximation in this case is a step approxi-
mation; that is, the points are midpoints of steps, instead of break points of a
piecewise linear approximation as in Fig. 1-3.

Example B. As a second example, let us extend the original domain of
L = —d?*/dx* to apply to functions not satisfying the boundary conditions
0) = f(1) = 0. Referring to (1-13), we note that boundary terms appear if the
functions do not obey the given boundary conditions. However, if an extended
operator L* is defined by



Sec. 1-7] Extended Operators 1y
1 d’w 1
s Ef == dx — | f— -

o, 7> = [ wifax - [ 15 (1-64)

we have {w, L) = {f, L*w even if the original boundary conditions are not

met. Hence the extended operator is self-adjoint regardless of boundary condi-

tions. A method-of-moments solution therefore proceeds in this extended domain

in the same manner as for the original domain, except that the expansion and
testing functions need not satisfy boundary conditions.

To illustrate the procedure, consider the choice

fa=w,=x" n=1L12....N (1-65)

For N = 4 these functions form a basis for the exact solution (1-32), and hence
the exact solution should be obtained. Evaluating the matrices in the usual way,

using the extended operator for [, = {Wa, L., for N = 4 we obtain the
matrix equation
=1 sy =Y =T TET T
2 -5 -3 -2 |s]_[#
-3 -3 -3 -5 | |e|T|H )
-4 -3 -5 -] |a] L&

0ar

exact and N = 4

0.2

0.1

x

Figure 1-4. Extended operator moment solutions using powers of x for expansion and testing,
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This may be solved for the a's to obtain

oy 3
o= ao
-%

which 1s indeed the exact solution. Note that if (1-65) are used with the original
operator L = —d?/dx* a singular [/] matrix results, and hence no solution is
obtained. To illustrate convergence using the extended operator, Fig. 1-4 shows
plots of the cases N = 2 and N = 3, plus the exact solution (N = 4).

1-8. Variational Interpretation

It is well known that Galerkin's method (w, = f,) is equivalent to the Rayleigh-
Ritz variational method [6,7]. That the general method of moments is also a
variational method is usually not noted, but the proof is essentially the same as
for Galerkin's method [7].

Let us first interpret the method of moments according to the concepts of
linear spaces. Let S°(Lf) denote the range of L, 5°(Lf,) denote the space spanned
by the Lf,, and $(w,) denote the space.spanned by the w,. The method of
moments (1-23) then equates the prujoﬂ?ﬂn of Lf onto 5 (w,) to the projection
of the approximate Lf onto %(w,). Figure 1-5 represents this pictorially. In the

(L)

— S{Lf,)

H(w,)

Figure 1-5. Pictorial representation of the method of moments in function space.

special case of Galerkin's method, $(w,) = &(f.). Recause the process of obtain-
ing projections minimizes an error, the method of moments is an error-
minimizing procedure. Because the error is orthogonal to the projections, it is
of second order. This same conclusion is obtained from the calculus of variations
[7]. The derivation of the variational results will not be given here, but we shall
summarize the conclusions.

‘Given an operator equation Lf = g, it is desired to determine a functional of
J (number depending on f)
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p(f) =S k> (1-68)

where h is a given function. If k is a continuous function, then p(f)is a continuous
linear functional. The functional p may be fitself if & is an impulse function, but
then p is no longer a continuous functional. Now let L* be the adjoint operator
to L, and define an adjoint function f* (adjoint field) by

Lf*=nh (1-69)
By the calculus of variations, it can then be shown that [7]

_SLh S
LLSD

is a variational formula for p with stationary point (1-68) when fis the solution
to Lf = g and f* the solution to (1-69). For an approximate evaluation of p, let

f=g ofu f° =€ [ (1-71)

(1-70)

Substitute these in (1-70), and apply the Rayleigh-Ritz conditions
dp/da; = dp/8B; = 0 for all i. The result is that the necessary and sufficient
conditions for p to be a stationary point are equations (1-23). Hence the method
of moments is equivalent to the Rayleigh-Ritz variational method [7]. The
method of moments is closely related to the direct methods of the calculus of
variations, so called because they yield a solution to the variational problem
without recourse to the associated differential equation.

The above variational interpretation can be used to give additional insight
into how to choose the testing functions. It is evident from (1-69) and (1-71) that
the w, should be chosen so that some linear combination of them can closely
represent the adjoint field /. When we calculate fitself by the method of moments,
h of (1-68) is a Dirac delta function and f* of (1-69) is a Green's function. This
implies that some combination of the w, should be able to approximate the
Green’s function. Since a Green's function is usually poorly behaved, we should
expect computation of a field by the method of moments to converge less slowly
than computation of a continuous linear functional. This is found actually to be
the case.

1-89. Perturbailion Soluiions

Sometimes the problem under consideration is only slightly different (perturbed)
from a problem which can be solved exactly (the unperturbed problem). A first-
order solution to the perturbed problem can then be obtained by using the solu-
tion to the unperturbed problem as a basis for the method of moments. This
procedure is called a perturbation method. Higher-order perturbation solutions
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can be obtained by using the unperturbed solution plus correction terms in the
method of moments. Sometimes this is done as successive approximations by
including one correction term at a time, but for machine computations it is

usually easier to include all correction terms at once.
To express these concepts in equation form, let

Lo(fo) =g (1-72)

represent the unperturbed problem for which the solution f; is known. Let
M = L — L, be the difierence operator, and hence

L(f)=(Lo + M)f) =g (1-73)

represents the perturbed problem for which the solution f is desired. For a
first-order perturbation solution, let

f=afy (1-74)
and apply the method of moments. If L is self-adjoint, the testing function
w = f, may be chosen; otherwise we should choose w = fj, the solution to the

unperturbed adjoint problem. An application of the method of moments to this
one-term expansion yields

({fo,r Lofo» + {fo, MfoD)x = {fo, 8> (1-75)
Now, by (1-72), {fo, Lofo> = <fy, g, and the above equation can be written

1 _ {fl}t Mfﬂ}
Jos @0 + {Jo: Mfy)

(1-76)

If the perturbation is truly small, the second term in the denominator of (1-76)
will be small compared to the first term, and from (1-74) and (1-76)

(1-77)

o1 - Lo M),

{fur ﬂ}

This is the first-order perturbation solution.

For higher-order solutions, we merely choose f;, = f, in the general method
of moments (Section 1-3) and f;, f5,... serve as correction terms. For self-
adjoint operators, choose w; = f,: otherwise choose w, = fj. The advantage of
a perturbation approach over other moment solutions rests primarily in the
faster convergence of the perturbation solution.
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Electrostatie Fields

2-1. Operaior Formulaiion

The static electric intensity E is conveniently found from an electrostatic poten-
tial ¢ according to

=-V¢ (2-1)

where V is the gradient operator. In a region of constant permittivity ¢ and
volume charge density p, the electrostatic potential satisfies the Poisson equation

-V =p (2-2)

where V? is the Laplacian operator. For unique solutions, boundary conditions
on ¢ are needed. In other words, the domain of the operator must be specified.
For now, consider fields from charges in unbounded space, in which case

r¢p — constant as r — o (2-3)

where r is the distance from the coordinate origin, for every p of finite extent.
Now the differential operator formulation is

L =p (2-4)
where
L= —gV? (2-5)
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and the domain of L is those functions ¢ whose Laplacian exists and have r¢
bounded at infinity according to (2-3). The well-known solution to this problem is

P(x, y, 2) = J-J- p{x,}r z]dx’ dy' dz' (2-6)

where R = /(x — x) + (y — ¥)* + (z — z')? is the distance from a source
point (x', ', 2') to a field point (x, y, z). Hence the inverse operator to L is

L =J]' _|' dx' dy' dz’' 4:51-: (2-7)

It is important to keep in mind that (2-7) is inverse to (2-5) only for the boundary
conditions (2-3). If the boundary conditions are changed, L™ changes. Also, the
designation of (2-5) as L and (2-7) as L™" is arbitrary, and we could reverse the
notation if desired.

A suitable inner product for electrostatic problems (e constant) js*

(¥ = [[[ #Cx, v, 2W(x, y, 2) dx dy dz (2-8)

where the integration is over all space. That (2-8) satisfies the required postulates
(1-2), (1-3), and (1-4) is easily verified. We now wish to show that L is self-
adjoint for this inner product. For this, form the left side of (1-5),

(L, ¥ = [[[ (~eV?¢) dr (2-9)

where dt = dx dy dz. Green's identity is

[[Twvs ~ v de = (Iﬁ' i‘ﬂ) ds (2-10)

where § is the surface bounding the volume ¥ and n is the outward direction
normal to S. Let-S be a sphére of radius r, so that in the limit r - oo the volume
¥ includes all space. For ¢ and y satisfying boundary conditions (2-3),§ = C,/r
and d¢/on — C,/r* as r =+ co. Hence § d¢/dn — C/r® as r -+ o, and similarly
for ¢ dy/dn. Since ds = r® sin 8 df d¢ increases only as r?, the right side of
(2-10) vanishes as r —+ co. Equation (2-10) then reduces to

[[[wv26 dx = [[[$¥2y dr @-11)

! For £ a function of position, the differential operator (2-5) is changed to —V - (£V), and
g should be included in (2-8) as a weight function to make this new operator self-adjoint.
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from which it is evident that the adjoint operator L® is
I* =L = —gV? (2-12)

Since the domain of L® is that of L, the operator L is self-adjoint. The mathe-
matical concept of self-adjointness in this case is related to the physical concept
of reciprocity [1].

It is evident from (2-5) and (2-7) that L and L™ " are real operators. It will now
be shown that they are also positive definite; that is, they satisfy (1-6). As dis-
cussed in Section 1-2, we need only show it for either L or L™, For L, form

% L) = [[[ $*(—2v?9) dr (2-13)

and use the vector identity ¢V3¢ = V- (¢V¢) ‘F¢ V¢ plus the divergence
theorem. The result is

(4%, Lg> = [[[e9g* - V¢ dr - ﬁ £d*V¢) - ds (2-14)
¥

where § bounds V. Again take S a 's;phere of radius r. For ¢ satisfying (2-3), the
last term of (2-14) vanishes as r —+ oo for the same reasons as in (2-10). Then

*, L§> = [[[e1VgI? dx (2-15)

and, for & real and & > 0, L is positive definite. In this case positive definiteness
of L is related to the concept of electrostatic energy.

2-2. Charged Conducting Plaie

Consider a square conducting plate 2a meters on a side and lying on the z = 0
plane with center at the origin, as shown in Fig. 2-1. Let a(x, ») represent the
surface charge density on the plate, assumed to have zero thickness. The electro-
static potential at any point in space is

a(x’, ')
4neR

d(x, y,z) = J' :.dx‘ [ ;dy’ (2-16)

where R = /(x — x')* + (¥ — »")* + z%. The boundary condition is ¢ = V
(constant) on the plate. The integral equation for the problem is therefore

a(x’, y')
dne f(x — X' + (y — y')?

v mJ’_ dx’ J’_ dy’ 2-17)
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where |x| < a, |¥| <= a. The unknown to be determined is the charge density
o(x, ¥). A parameter of interest is the capacitance of the plate

C E i jj-dx [ dy o(x, ) (2-18)

which is a continuous linear functional of o.

Let us first go through a simple subsection and point-matching solution [2],
and later interpret it in terms of more general concepts. Consider the plate
divided into N square subsections, as shown in Fig. 2-1. Define functions

v |1 on As,
Jo= tﬂ on all other As,, (2-19)
and let the charge density be represented by
N
E[I, .-"'r} = E]'xn .Frl‘- {2'2[}]

Substituting (2-20) in (2-17), and satisfying the resultant equation at the mid-
point (x,, v.) of each As,, we obtain the set of equations

N ™
V=Ylua m=12..,N (2-21)
n=1
where
l i 1
L. = dx*j dy' (2-22)

Axn arn  Aney/ (X — X)* + (yu— V)

Figure 2-1. Square conducting plate and subsections.
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Note that [, is the potential at the center of As,, due to a uniform charge density
of unit ampiitude over As,. A solution to the set (2-21) gives the o, in terms of
which the charge density is approximated by (2-20). The corresponding capaci-
tance of the plate, approximating (2-18), is

N
= = Zln, As, =Y I7] As, (2-23)

This result can be interpreted as stating that the capacitance of an object is the
sum of the capacitances of all its subsections plus the mutua] capacitances
between every pair of subsections.

To translate the above results into the language of linear spaces and the
method of moments, let

f(x, y) =a(x, y) (2-24)
glx, )=V x| <a,lyl<a (2-25)
L(f) = _f dx' _f dr Ld2d (2-26)

dne./(x — x'V +(y — y')?

Then L(f) = g is equivalent to (2-17). A suitable inner product, satisfying (1-2)
to (1-4), for which L is self-adjoint, is

fray = dx [ dyfx o) @-21)

To apply the method of moments, we use the functions (2-19) as a subsectional
basis, and define testing functions

W = 0(x — x)0(y — yu) (2-28)

which is the two-dimensional Dirac delta function. Now the elements of the [/]
matrix (1-25) are those of (2-22), and the [g] matrix of (1-26) is

[9a] =] : (2-29)
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The matrix equation (1-24) is, of course, identical to the set of equations (2-21).
In terms of the inner product (2-27), the capacitance (2-18) can be written

1

con®

(2-30)

since ¢ = V on the plate. Equation (2-30) is the conventional stationary for-
mula for the capacitance of a conducting body [3].

For numerical results, the /.., of (2-22) must be evaluated. Let 2b = 2a/\/N
denote the side length of each As,. The potential at the center of As, due to unit
charge density over its own surface is

I IIud..'n: d 1
"=J'- -» y4u.fx=+y1

2b 2b
=—In(1 +,/2) =—(0.8814) (2-31)

This derivation uses Dwight [4], 200.01 and 731.2. The potential at the center of
As,, due to unit charge over As, can be similarly evaluated, but the formula is
complicated. For most purposes it is sufficiently accurate to treat the charge on
As, as if it were a point charge, and use '

As, " b?
R g [(xp = X + (U — )

- m#n

(2-32)

This approximation is 3.8 per cent in error for adjacent subsections, and has less.
error for nonadjacent ones. Table 2-1 shows capacitance, calculated by {E-g
using the a's obtained from the solution of (2-21), for various numbers of sib-
areas. The second column of Table 2-1 uses the approximation (2-32), the third

TABLE 1-1. Capacitance of a Unit Bquare Plate

(picofarads fmeter)

No. of Cl2a Cl2a
subareas | approx. [.. | exact /..

1 1.5 315

9 37.3 36.8

16 38.2 .7

36 39.2 38.7

100 $9.97 39.5
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charge density ‘potential

1 1 1 1 | 1 1 1 L

0 o1 0.2 0.3 0.4 0.5 6 0.7 0.8 0.g 1.0

distance along plate

Figure 2.2. Approximate charge density on subsections adjacent to the centerline of a square
conducting plate.

column uses an exact evaluation of the /_,. A good estimate of the true capaci-
tance is 40 picofarads. Figure 2-2 shows a plot of the approximate charge density
along the subareas nearest the center line of the plate, for the case N = 100
subareas. Note that ¢ exhibits the well-known square root singularity at the
edges of the plate.

Other geometries for which square subareas have been used to obtain
numerical solutions are rectangular plates [2] and solid conducting cubes [5].
The related problem of a parallel-plate capacitor is treated in Section 2-4.

2.3. Conduciers of Complex Shape

Often it is not possible to use square subareas for electrostatic problems. In this
section we consider some simple approximations which enable almost any con-
ducting body to be treated by subarea approximations.

First, consider the plane disk of radius r, with uniform charge density of unit
amplitude. The electrostatic potential ¢ at its center is given by the simple
integral

1 r

i r
é = J‘D do Lp b =3 (2-33)
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Let us compare this potential for a disk to that at the center of a square area with
unit charge density and the same area A4, given by (2-31). The result is

Pais = g (0.2821)
(2-34)
Puquare = “{E (0.2806)

There is less than 0.54 per cent difference between the two. This is because the
major contribution to ¢ is due to the charge in the immediate vicinity of the
field point, and this is the same in each case. Hence if a subarea is not too narrow
(has a reasonably large area/perimeter ratio), a good approximation to the diag-
onal elements of the [/] matrix is

ha % —— /4, (2-35)

where A, is the area of the nth subarea. A useful approximation for the off-
diagonal elements is the point-charge approximation of (2-32), which can be
written in general as

A,

l
kil dneR,,

ms#n (2-36)

where R, = J(x, — x. + (¥, — ¥.)* + (2, — z,)? is the distance between
the centers of the mth and nth subareas. Approximation (2-36) cannot be used if
the body has different areas very close together, as, for example, in the parallel-
plate capacitor (see Section 2-4).

When the above approximations are not sufficiently accurate, the following
procedure is convenient for calculating the /., Figure 2-3 shows an elongated

Figure 2-3. Numerical evaluation of [,
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triangular subarea. To evaluate [, divide the area into a disk plus segments of
circular annuli, as shown. Label these subsubareas 0, 1, 2,.... Then

1 - 1 A;
= Fali Ll =37
Lo £ (ﬂjﬂz\/ﬁdﬂ > Zr Rm) (237)

where A, is the area of the disk, the 4, (i = 1, 2,...), are the areas of the
annular segments, and R, is the distance from the center of the ith annulus to
the center of the disk. Equation (2-37) is basically a numerical evaluation of the
integral for [,,. If the subarea is not planar, the subsubareas can be taken as
those lying betmcn,cnnc:ntnn spheres. Eval Evaluation of l..» elements for very close
subareas can be a&‘ﬂﬁlphshtﬂ in a similar manner. For problems having ro-
tational symmetry, it is sometimes convenient to take complete annular sub-
areas, as demonstrated by the following example.

Example., Consider a hollow conducting tube of circular cross section and
length L, as shown in Fig. 2-4. We wish to determine the electrostatic capacitance.

almest - square cylindrical

subsechinn subsections
- i’ -
-\" —-\.\ -h.h 1'1 N oy
\ \ 1.\1 \ \ \
L i it | i [
: I | | | | .
‘ RN - ok
I /
/ ] | 1’ | /
! ! i/ £ g /
.-I'l‘r _.-"' # " o L
| l
= L )

Figure 2-4. Hollow conducting circular cylinder,

The tube has rotational symmetry about its axis, and hence cylindrical sub-
sections are convenient, as indicated on the figure. To evaluate the /,,, each
subcylinder can be further divided into smaller, almost square, subsections, as
shown in Fig. 2-4. The [, for a point-matching solution are then evaluated by
formulas similar to (2-37) as applied to the almost-square subsubsections. Note
that for this problem all the /., are equal, and the [, depend only on |m — n|.
Hence [[] is a Toeplitz matrix [6).

Some numerical results are given in Table 2-2, calculated using 10 cylindrical
subsections. The corresponding charge density was as expected, being almost
uniform in the central region of a thin tube and singular at the ends. A similar
problem, that of the capacitance of washer-type conducting plate, has been
treated in the literature [7]. This latter problem was done using an analytical
evaluation of the [, rather than a numerical one.
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Table 2-2. Capacitance C(picofarads) for a
Hollow Tube of Length 1 Meter, for Various

Length [Diameter (L/d) Ratios
Lid 1 2 6 20 60

C 63 42 23 17 12

2-4. Arbilitrary Excliailon of Conduciors

So far we have been considering only the specific problem of a charged conduct-
ing body. We now wish to take the more general viewpoint that the [/] matrix
characterizes the conducting body (or bodies) for any excitation. The excitation
may be due to charge on the conductors or to external charges which produce an
“impressed " field. The particular excitation enters only into the [g] matrix of
the method of moments, and hence [/] depends only on the geometry of the con-
ductors. Once the inverse matrix [/~ '] is obtained, a specific solution is obtained
by matrix multiplication according to (1-27).

To express these ideas in equation form, consider the general problem repre-
sented by Fig. 2-5. There are N conducting bodies, having net charges ¢;, §3,...
gy, and potentials ¥,, V,, ..., Vy. External to the conductors there may be
additional sources which, in the absence of conductors, produce a potential ¢'
(impressed field). The boundary condition is that ¢' plus the potential due to
charges on the conductors must bc constant on each mnductur In equation
form, this is :

fp:i on §,

; p. l"r: on S,
é + 9 amer ds = (2-38)

. ,‘VHUHSH

®  external
X SOUrCes
5

Figure 3-5. N charged conductors in the field of external sources.
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where ¢ is the surface charge density on the conductors. The ¢' and ¥, are
assumed known, and (2-38) is an integral equation for o. Equation (2-17) is the
specialization of (2-38) to a charged conducting plate with no external sources.
The total charge y, instead of ¥, may be specified on each conductor, in which
case the W, are treated as unknown constants in (2-38) to be obtained after o is

found.

Example. To illustrate these concepts, consider the two-body problem of paral-
lel square conducting plates, as shown in Fig. 2-6. We here treat the case ¥,
specified on the plates but with no external sources (¢' = 0). The same plates in
an impressed field are considered in Section 2-35.

Let both the top and bottom plates be divided into N square subsections, so
that the total number of subsections is 2N. The charge density is assumed con-
stant on each subsection, and the total field is matched at the center of each
subsection. The evaluation of the [/] matrix follows the procedure of Section 2-2,

and results in the following 2N by 2N matrix

_[tm o
"1 0™

where ¢ denotes “top plate™ and b denotes * bottom plate.” The N by N sub-
matrices on the diagonal are single-plate matrices; hence

/] (2-39)

[] =[I*] =[] of Section 2-2 (2-40)

The off-diagonal submatrices are the plate-to-plate matrices, which must be
equal:

[*] =["] (2-41)

Figure 2-6. Paralle]l square conducting plates.
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Let the elements [, be ordered so that when m = n the subareas are one on top
of the other; that is, they coincide as d — 0. Now if m # n, the point-charge
approximation of (2-32) gives good results; that is,

bl
R/ (X — Xp)* + (Y — ¥a)* + o

When m = n, the square subsection can be approximated by a circular one of
the same area, and the potential evaluated a distance 4 above it. The integration
gives (2-33) with r replaced by /r¥ + d* — d; hence the desired [ is (2-35)
modified by the ratio of these factors, or

= G‘T%Ez {lbl[\/ E@i = "ﬁd] (-43)

fan (2-42)

This completes the evaluation of [/].
Suppose we wish to evaluate the usual capacitance between the two plates.

This corresponds to voltage + ¥ on the top plate and — ¥ on the bottom one.
Hence the excitation matrix is

[9m] = [[H: i] (2-44)
where
%
[9n] = —[gn] = F (2-45)

The «, correspond to the charge densities on each subarea and are given by
(1-27). However, for this problem, it is evident from symmetry that the charge
density on the top plate is minus that on the bottom plate. Hence

_[ta] [ =
o2 '[[uf] } —[u:.]‘ 246

and we can use this to reduce [/][z] = [g] to
[imn = Tnd[22] = [g%] (2-47)

which is only an N by N matrix equation. The charge densities on the top plate
are now found by inversion as

(o] = [ = ") 1[gs] (2-48)
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where [g'] is given by (2-45). The capacitance of the parallel-plate capacitor is

_ charge on top plate

< Z

1 £
y s, (2-49)

Since all the As = 4b* and all elements of [¢"] = V¥, this can be written

C=4b2Y ("=} (2-50)
which is simply 4b* times the sum of all elements of [(I" — I')"!].

Computations for this case have been made and compared with other
approximate solutions [8]. When fringing is neglected, the capacity is C ~ eA/d.
Figure 2-7 shows the results obtained from (2-50) for the case N = 36, normal-
ized to ed/d. It is interesting to note that, when d is as little as 0.05a, neglecting
fringing results in 6 per cent error. The error rapidly increases as d becomes
larger, becoming 100 per cent as d — o0.

Now suppose we want the capacitance of the two plates when connected
together. This is obtained by keeping both plates at the same potential V. Then,
instead of (2-45), we have

r]

) =a1=|" (2-51)

dila

Figure 1-7, Capacitance of a square parallel-piate capacitor, normalised te £.4)d,
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and, from symmetry, instead of (2-46),

L]
= 2-52
[=.] [[ 1:.]] (2-52)
Analogous to (2-47), the N by N matrix equation for the present excitation is
[lme + D[] = [g2] (2-33)
and, analogous to (2-48), the solution is
(o] = [(F* + I")a 10g2] (2-54)
The capacitance of the two fllatm connected together is then
C = total charge
V
2
==Y a As, (2-55)
V iep

which can also be written in the form of (2-50) as

C =8b* Y (M + M)z} (2-56)

Note that as d — 0, [["] = [I"*] and C becomes the capacitance of a single plate
(Section 2-2). As d = o, [I™] = 0, and C becomes twice the capacitance of a

single plate.

2-5. Eleciric Polarizabllity

If a conducting body with no net charge is placed in a uniform electrostatic
field, a net dipole moment p usually results. In general,

p= g ro ds (2-5T)

where r = u.x + u,y + u,z is the radius vector from the origin to a point on
the surface S of the conductor, and o(x, y, z) is the surface charge density on S.
The dipole moment is proportional to the impressed field E' which produces o;
hence - '

p=[x]"E (2-58)

where [y] is the polarizability tensor. Elements of [x] may be found by applying
a unit field E and evaluating components of p. For example, x,, = p, for


Aaron
Rectangle


—— -

E = u,, and so on. The polarizability tensor is a useful quantity for the analysis
of artificial dielectrics [9] and for scattering by small objects.

The appropriate integral equation is (2-38) specialized to a single conducting
body S, which is

o ]
ﬁ Rds=V-¢ (2-59)

where ¢' is a potential from which the electrostatic field is determined by
E' = —Vg'. The constant potential ¥ must be obtained from the condition

ﬁn’ds=[l (2-60)
5

That is, the net charge on § is zero. Whenever E' is perpendicular to a plane of
reflection symmetry for the conductor, we can choose ¢' = 0 on that plane and
¥ = 0 in (2-59), which is equivalent to satisfying condition (2-60).

Example. Consider the parallel conducting plates of Fig. 2-6. We wish to
determine the polarizability tensor when they are connected together, that is,
maintained at the same potential. From symmetry considerations, it is apparent
that an E, will produce only a p,, an E, only a p,, and an E, only a p,. Hence the
polarizability tensor is diagonal:

Y 0 0
[x]= [D L © ] (2-61)
0 0 .

and the x, y, and z axes are principal axes of [x]. Also, from symmetry, 1,, = ¥,y
for square plates.

To evaluate y,,, take E' = w, and ¢* = —z. Note that ¢' = Oon z = 0, the
plane of symmetry, and hence (2-60) will be satisfied. Now the integral equation
(2-59) becomes

o . _| d/2 ontop plate
ﬁ 4neR 4 —~df2  on bottom plate (2-62)

This is the same integral equation as for the parallel-plate capacitor, except that
V is replaced by d/2. Hence the charge distribution is given by (2-48), where

(S J I~ % I~

(2-63)
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The polarizability is then found by approximating (2-57) by the summation

N [d d
Xez =P = E(Eﬁnﬁsn'l'iunmt)

A= |

_d*As

DI (AR b (2-64)

where As = 4b%, In terms of the capacitance between the parallel plates, (2-50),
Xz =3d?C (2-65)

This relationship between polarizability and capacitance results because of the
parallel-plate nature of the problem, and does not result in general. As a check
on (2-65), note that ¢ = CV = Cd|2, and p, = gd = d*C/2. Note that when
fringing can be neglected, (2-65) becomes

foe ™ e dA =§ (volume) (2-66)

where A is the area of one plate and the volume is that between the plates.

For the other two elements x,. = x,, of (2-61), let E'=u, and ¢' = —x.
Again ¢' = 0 on a plane of symmetry, whence (2-60) is satisfied. Now, instead
of (2-62), the integral equation is

o
ﬁ IR ds = —x on the plates (2-67)

It is evident that the charge distribution is the same on both plates, and hence is
given by (2-54) with

Xy

g1 =|*2 (2-68)

where x, is the x coordinate of the As, subarea. The approximate evaluation of
(2-57) then gives

N
I.‘I:.I . F.'E - Z. xn 2'Iill ﬂsﬂ

=862 ¥ x (I + ")z} x, (2-69)
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Another way of writing this result is

= 2b*[Fn1[(I" + I")nn 10ga] (2-70)

where ~ denotes transpose. This is a form that we shall encounter again in
subsequent chapters.

2-8. Dielectric Bodies

The electrical state of a dielectric body in an electrostatic field is characterized
by its polarization,

P=D—-¢gE=(zg—¢g)E (2-71)

where ¢ is the capacitivity (permittivity) of the dielectric and &, that of vacuum.
The electric field due to the polarization is given by [10]

B = 8(P) = —v(jj [ : Ux d‘t) (2-72)

where uy is the unit vector pointing from the source point to the field point.
Basically (2-72) is a superposition of the fields from all dipole elements Pdr of
source. The total field E' + E® must satisfy (2-71) in the dielectric; hence an

integral equation for P is
1
i ]
E+&P)=—P (2-73)

where & is defined by (2-72) and Ae = & — &.
A solution may be obtained by subsection and point-matching techniques.
In canonical form (2-73) is

L(P) = &(P) — i P=-F (2-74)

The functions in (2-74) are vectors, and require three numbers to represent them
at a point. Following the method of moments, we use the following subsectional

basis functions:

(u,m,w,) in At,
f2=1(0,0,0) elsewhere @5
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where the u's are coordinate unit vectors and Ar, is a representative volume
element. The elements of the «, coefficients of (1-21) can then be interpreted as
the amplitude of the x, y, and z components of P in Ar,; that is

Oy = (s Cys )
= P(Xps ¥nr Za) =P, (2-76)
where (x,, ¥,. z,) are the coordinates of the center of Ar,. Using the expansion

(1-21) in (2-74), and matching the resultant equation at the centers of all Ar,,
we obtain the matrix equation

[l(P,] = —[E.] (2-77)
where E!, = EY(x,., ¥... z.). Fach element of [/] is a dyadic, of the form

— 1 -
XK __ O ¥
T
| & - - (2-78)
1
x y .
L z‘_ [ L] Al ﬂz_

where the e, are derived from & in the same manner as the /,,, are derived from
L. For a physical interpretation of the elements of (2-78), we note that &5 is the
x component of E at (x,, V. Z,,) due to P = u_ at (x,, ,, z,), €& is the y com-
ponent of E due to the same P, etc. The solution to (2-77) is, of course, given by

[P.] = — [ 1[E,] (2-19)

If m and n range from 1 to N, this is a 3N by 3N matrix equation due to the
vector nature of P and E. Note that the e terms of (2-78) are independent of &,
which enters only into the As terms.

For crude solutions, the following approximations are often adequate. When
m # n each P, At, can be viewed as a point dipole, and E evaluated at At,,. The
result is

E Ut ey, (2-80)
where i, j denote x, y, or z, and e, is the dyad

At v RIRY) (2-81)

Comn
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where R = u(x, — x,) + 0,(yn — »») + 0z, — 2z,). When m = n the field
can be approximated by that at the center of a sphere having the same P.
This results in

Cpy = — — (2-82)

and e = 0, i # j. For better results, the approximation (2-82) may be replaced
by the field at the center of a spheroid or cylinder which approximates Ar. Still
better results can be obtained by numerical integrations similar to those of
Section 2-3.

The above solution remains valid for inhomogeneous dielectrics (& a function
of position), in which case the & of each At is taken to be that at its center. For
homogeneous dielectrics, the problem can be formulated in terms of a surface
distribution of bound charge [11], instead of a volume distribution of P. Since
charge is a scalar quantity, this procedure materially reduces the number of un-
knowns in the matrix solution.
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Two-dimensional
Electromagnetie Fields

3-:1. Transverse Magnetic Fields

To avoid unnecessary details, we start our consideration of electromagnetic
fields with two-dimensional problems. These can be thought of as three-dimen-
sional problems for which there is no variation of field quantities with respect to
one cartesian coordinate, taken to be the z coordinate. We postpone a general
discussion of three-dimensional fields until Chapter 5, after we have treated a
number of special cases.

An arbitrary electromagnetic field can be expressed as the sum of a transverse
magnetic (TM) part and a transverse electric (TE) part. The TM part has only
components of magnetic field H transverse to z, and the TE part has only com-
ponents of E transverse to z. For two-dimensional fields in isotropic media, the
TM part has only a z component of E and the TE part only a z component of H.
In many cases the TM and TE parts can be treated separately, reducing the
problem to a scalar problem. In this section we consider only TM fields, the TE
case being considered in Section 3-4.

In general a time-harmonic electromagnetic field (e/® time variation) satisfies
the Maxwell equations

VxE=—jouH (3-1)
V x H = jweE + J (3-2)

where J is the volume distribution of electric currents. For TM fields, assume

AW
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that E = u, E,(x, y), and similarly for J. The Maxwell equations then lead to
V2E, + k*E, = joulJ, (3-3)

where k = @+/eu = 2x/A is the wavenumber (A = wavelength). Equation (3-3)
is the two-dimensional Helmholtz equation. Solutions may be obtained by first
finding the field from a two-dimensional point source, that is, a three-dimen-
sional line source. The field at p = u,x + u, y due to a filament of current [ at

where n = /ufe = 120x is the intrinsic impedance of free space and H® is
the Hankel function of the second kind, zero order. The E, of (3-4) is the Green's
function for the operator of (3-3). A general solution is then the superposition of
E, due to all elements of source J, ds, or

E®) = =2 [[ 1) klp — ) ds (39)

where the integration is over the cross section of the cylinder of currents J,.

3-2. Conducting Cylinders, THM Case

Consider a perfectly conducting cylinder excited by an impressed electric field
E;, as represented by Fig. 3-1. The impressed field induces surface currents J, on
the conducting cylinder, which produce a scattered field E;. The field due to J,
is given by (3-5) specialized to the cylinder surface C. The boundary condition is

E,=E!+E!=0 onC (3-6)

that is, the tangential electric field vanishes on C. Hence, combining (3-5) and
(3-6), we have the integral equation

Ep) =" [ JOOHSKIp—pDdl ponc ()

where El(p) is known and J, is the unknown to be determined.

The simplest numerical solution of (3-7) consists of using pulse functions for
a basis and point matching for testing. To accomplish this, the scatterer contour
C is divided into N segments AC, and pulse functions defined as

1 on AC,
Jile) = ‘ 0  onall other AC,, ()
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Letting J, = }_ «, f,, substituting in (3-7), and satisfying the resultant equation
at the midpoint (x,,, »,.) of each AC,,, we obtain the matrix equation

[lal(2] = [g.] (3-9)
where the elements of [«,] are the a, coefficients, the elements of [g,] are
m= E:.(I_. .F-} {3—1“]
and the elements of [[,,] are
b= [ HP = + O =y dl (@-11)

A solution for the current is then given by J, = [/l )lg,) as discussed in
Section 1-3.

There is no simple analytic expression for the integral (3-11), but we can
evaluate it by various approximations. The crudest approximation is to treat an
element J, AC, as a filament of current when the field point is not on AC,; that is,

lua % 3 k AC, H[ky/Gry — %" + (0 — 1) (3-12)

¥

Figure 3.1, Cross section of a cylinder and cosrdinate systam.
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when m # n. For the diagonal elements /,, the Hankel function has an integrable

singularity, and the integral must be evaluated analytically. For this, we approxi-
mate AC, by a straight line and use the small argument formula

HP(z) =1 —j i log (""2—:) (3-13)

where y = 1.781 ... is Euler’s constant. An evaluation of (3-11) then gives

" 2. vk AC,
ek d.ﬂ'_[l ~j~log ( = )] (3-14)

where e = 2.718 ... The approximations (3-12) and (3-14) are analogous to
those used in Section 2-2 for electrostatic problems. Better approximations for
the present problem will be discussed in Section 3-3.

Example. Consider TM plane-wave scattering by conducting cylinders '[2,3].
In this case the impressed field is a uniform plane wave, which, if incident from
the direction ¢,, is given by

EL = plh(x oo dityaindi) (3-15)

This determines the excitation [g,] according to (3-10). An approximate evalua-
tion of [I,,] is given by (3-12) and (3-14). The solution for J, is then found by
matrix inversion in the usual manner.

A parameter of interest is the scatrering cross section o, defined as the width
(area in three-dimensional problems) for which the incident wave carries suffi-
cient power to produce, by omnidirectional radiation, the same scattered power
density in a given direction. In equation form, this is

2

E'(¢)

——

7 (3-16)

ol(¢) = 2np

where E*(¢) is the distant field from J,. It can be found by using the asymptotic
expression for H5? in (3-5). The result is [1]

E(¢) = nkK _L-h{-f’ i el (3-17)

where

1
K{p} e !—Itt.p+h.f4] (3_13}

,j 8nkp
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Substituting (3-15) and (3-17) in (3-16), we obtain
o(9) =5H [ 2., yyetes smeeyaine gy (3-19)
c

This can be evaluated numerically once J, is found.

A particularly descriptive form for the evaluation of (3-19) is obtained as fol-
lows. Let the integral be approximated by a sum over all AC,, with J, = a,,
X = X,, ¥ = ¥, in the integrand for each AC,. The result is

2
ol¢n ¢0) = —-1[PIZ5 I0Va D1 (3-20)

where [F.] is an “ excitation™ voltage matrix
[V4] = [AC, e/mses rtamsin du)] (3-21)
[Z..] is & scatterer **impedance ' matrix
[Zs] = [ACy ] (3-22)
and [V7] is a *“ measurement ™’ voltage matrix.
L el (3-23)

where ¢ = ¢, is the angle at which & is evaluated. We shall encounter this form
again in Section 3-6 and subsequent chapters, it being a special case of the
generalized network parameters discussed in Chapter 5. Note that (3-20) obeys
the reciprocity relationship o(¢;, ¢,) = o(¢,, ¢;); that is, the scattering cross
section is unchanged if the transmitter and receiver are interchanged.

A number of computations have been made for rectangular conducting
cylinders using approximations similar to those above [2]. A more accurate
numerical evaluation of the integral equation was used by Andreasen to com-
pute solutions for cylinders of other shapes [3]. It should be pointed out that the
approximations made above will not converge to the exact solution as N is in-
creased, because the I, m # n, are not exact in the limit. The solution will con-
verge to the exact solution if (3-12) is replaced by a more accurate approximation.
To illustrate the accuracy that can be obtained using the simple approximations
of this section, Fig. 3-2 shows the magnitude of the current on an ellipse as com-
puted by Andreasen and by the formulas of this section. It is interesting to note
that if the current is calculated by m x H on C instead of using the a«,, a better
solution is obtained, as indicated in Fig. 3-2. The scattering cross section, as
computed by Andreasen and by the above formulas, is illustrated by Fig. 3-3.
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Figure 3-3. Carrent density on a conducting elliptic cylinder excited by a plate wave,
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Figure 3-3. Seattered ficld pattern for & conducting elliptic cylinder excited by a plane
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Note that the two results are almost identical, even though the currents (Fig. 3-2),

differ appreciably. This is because /o is a continuous linear functional of J, and
hence is insensitive to small variations in J about its true value (Section 1-8).

3-3. Various Approximations

The accuracy of a solution and the rate of convergence depend upon the ap-
proximations made. The solution of Section 3-2 can be improved by more
accurate evaluation of the [_,, as follows. For the [, additional terms can be
included in (3-13), but this will not appreciably affect convergence, since (3-14)
is exact in the limit AC, — 0. For the [, terms, m # n, we can expand the
integrand of (3-11) in a Taylor series about (x,, ».), and integrate the dominant
terms analytically. This will give both improved accuracy and convergence to the
exact solution as N —+ oo.

It has been found that the rate of convergence is almost twice as fast nt' a
piecewise linear approximation to J, is used instead of the step approximation.
In other words, the Nth-order linear solution gives about the same accuracy as
the 2Nth-order step solution. For a piecewise linear solution, instead of the steps
of (3-8) we use the triangles of (1-50), as discussed in Section 1-5. The evaluation
of the [, proceeds similarly to that for the pulse functions [4].

Solutions have also been obtained by Galerkin's method, using pulses for
both expansion and testing functions. It was found that, for solutions of the sub-
sectional-basis type, the accuracy and convergence of the Galerkin solution
were about the same as for the point-matching solution. The Galerkin method
apparently has its grmté%f”fﬁlity in pi?ﬁ_’urbatiunal solutions, that is, when the
solution is represented by only one expansion function, or by a few functions.

Perhaps the most convenient way of obtaining better approximations when
using computers is to numerically evaluate the [,,,. For this, we divide each AC,
into smaller subintervals, and approximate the integral over each subinterval by
(3-12) if nonsingular and by (3-14) if singular. To be explicit, let Fig. 3-4(a)
represent a small section of the contour of a cylindrical conductor. Let the sub-,
intervals AC,_,, AC,, and AC,,, be further subdivided as indicated by points
a, b, ¢, and d. Figure 3-4(b) shows the same contour straightened out, and an
expansion function constructed of three pulses. This three-stepped function
approximates a triangle function, shown dashed. Now, remembering that each
[, represents the field — E, at (x,, v,) due to expansion function f, at (x,, ¥,),
we can easily justify that, for m = n,

L = (333 + 122 + H33)mn (3-24)

where [, and I,, are given by (3-12) with AC, replaced by C,, and C,,, and /,,
is given by (3-14) with AC, replaced by C,, (see Fig. 3-4). The factors 1/2 in the
first and third terms of (3-24) arise from the fact.that the pulses over C,, and C
are one half the amplitude of the pulse over C,.. For the [, elements, m # n, the
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Figure 3-4. (a) Section of the contour. (b) Expansion function consisting of three con-
strained pulses.

procedure is the same, except that (3-12) is used for all J;; since the field point
never coincides with the source point.

To illustrate the accuracy obtainable with the above procedure, Fig. 3-5
shows the resultant current compared with Andreasen’s results [3]. Note that we
have taken smaller AC's in the region of rapid curvature on the ellipse for
better accuracy. It was found that when point m was distant from point n, say

10~

§ —

Figure 3-5. Current density on a conducting elliptic cylinder excited by a plane wave,
using constrained pulscs, TM case.
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P — Pa] = A/4, we can use (3-12) instead of (3-24) with no appreciable loss in
accuracy. In other words, it is more important to evaluate [, carefully for AC’s
close together than for distant ones. The use of expansion functions of the type
shown in Fig. 3-4 is equivalent to dividing the conductor into 2N segments, and
constraining every other «, to be the average of its adjacent «,'s before inverting
the [/..] matrix. We can, of course, use more pulses to approximate a triangle
function, but, judging from the accuracy of Fig. 3-5, this probably is unnecessary
for most purposes.

If we wish an approximation to the Galerkin solution, instead of the point-
matching solution, the functions of Fig. 3-4 can be used for both expansion and
testing. However, instead of analytically evaluating the second integration, we
can numerically evaluate it using approximations (3-12) and (3-14). The result is

Do = (3122 + (12 + lay + laa + 132) + {0y, + Lz + Iy + 133))0e  (3-25)

where the /; are the same /;; that appear in (3-24). One factor of 1/2 comes from
the fact that AC for each component pulse is 1/2 of AC,, other factors of 1/2
come from the fact that the two end pulses are 1/2 the amplitude of the central
pulse (Fig. 3-4). It is apparent from the forms of (3-24) and (3-25) that there will
be little difference between the two /,, and hence between the two solutions. Of
course, in the Galerkin solution the g, of (3-10) should also be modified to
represent a numerical integration of E! with the testing function of Fig. 3-4.

If the conductor is symmetrical about some axis, as is the ellipse, the problem
can be reduced to two matrices of order N/2, instead of a single matrix of order
N. Since the time required to invert a matrix is proportional to N2, this reduces
the matrix inversion time to one fourth the original time. The procedure is dis-
cussed in the literature [3,4). Finally, if the incident field E! is also symmetrical
about the same axis as is the conductor, only a single matrix of the order N/2
need be inverted.

3-4. Transverse Eleciric Fields

A two-dimensional TE field in isotropic media has no z component of E and only
a z com t of H. The most convenient general expression for the field is in
terms of potentials'

1
H=;?x.|l (3-26).

E=—joA — VO (3-27)

! In reference [1] the vector potential is defined so that uA replaces A in (3-26) to (3-28). We
denote the scalar potential by © and the charge density by g to avoid confusion with the
polar coordinates p and ¢.
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where the magnetic vector potential A and the electric scalar potential © satisfy

VA + k*A = —pJ (3-28)

Vi + k0 = —E \ (3-29)

The electric charge density q is related to J by the equarion of continuity
V:J=—jog (3-30)

Both (3-28) and (3-29) are Helmholtz equations, the same as (3-3), and hence
solutions are of the form (3-5). Defining the two-dimensional Green's function

Glp,p') = 411 H§klp - p'l) (3-31)

we can express solutions to (3-28) and (3-29) in unbounded two-dimensional
space as [1]

Ap) = i [[36G(p, p') ds’ (3-32)

o) = - [[ 46)G(o, ) (339

where the integration is over a z = constant cross section of the cylinder. In
evaluating the formulas of this section it should be remembered that all quanti-
ties are independent of z; hence all z derivatives are zero.

'8-5. Conducting Cylinders, TE Case

Let the conducting cylinder of Fig. 3-1 be excited by an impressed TE field. We
wish to determine the current on the cylinder and the field produced by this cur-
rent. This problem can be solved by enforcing the condition tangential E = 0
on C, as shown in Section 3-6, but first we consider the H-field formulation used
in the literature [2,3].

As discussed in Section 34, the TE field has only a z component of H, and a
transverse component of J. The total magnetic field /, at any point is the sum
of the impressed field H: plus the scattered field H? due to J on C; that is,

H,=H' + H* (3-34)
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The scattered field is related to its source J by (3-26) and (3-32), or

Hi=u-Vx [JGdI (3-35)
C

where the vector dl’ designates the reference direction of J. The field H, is finite
external to C, zero internal to C, and the discontinuity of H, on C equals the
current density. If the interior of C lies on the left side of 4l (right-hand rule),
then

J=—[H,c, (3-36)

where the C, denotes that H, is evaluated just external to C. Specializing (3-34)
to C,, we have

J-_[H;+u,-vuj'.mdr] (3-37)
C

Cs

which is an equation for the unknown current J. Equation (3-37) differs from the
classical integral equation in that a derivative operator as well as an integral
operator is present.

Because of the discontinuity in H, at C we have to be particularly careful in
evaluating (3-37). The Green’s function G is singular, and a simple interchange
of differentiation and integration is not always possible [5]. Figure 3-6 shows an
expanded view of the conductor boundary to help clarify these concepts. The
contour C lies on the current sheet, C, lies just outside, and C_ just inside. At
pointaon C,, H, = —J, and at point b on C_, H, = 0. If the scatterer is a con-
ducting sheet of infinitesimal thickness, it should be treated as the limit of one
of finite thickness.

We can write (3-37) in general operator notation as

L(J) = —H! (3-38)



Aaron
Rectangle


Bz Two-dimensional Electromagnetic Fields |[Uh. 3

where "
I

L) =J+ [n, -V x _[c.ra rﬂ’] (3-39)

Cw

and proceed according to the method of moments. Again the simplest approxi-
mation is to use the pulses (3-8) as basis functions, and point matching for
testing. The current is then given by J = }_ a, f,, and the resulting matrix equation

is (3-9) with
Gm = —Hy(Xm, ¥m) (3-40)
an = Oy + H(m, n) (3-41)
where 4, is the Kronecker delta and H,(m, n) denotes H, at (x,, ¥.) on C, due
to unit current density on AC, at (x,, y,). Figure 3-7 represents a typical

current element J1 = AC, and local coordinates (x, y). From symmetry, and
the fact that the discontinuity in H, is J, we have

Hlicosr = —H,|zup- = —1/2 (3-42)
=0 r=0
and hence, by (3-41),
la=1/2 (3-43)

If AC, <€ A and the field point (x, y) is distant from J1 = AC,, then the source

¥

(=¥}

J1= AC, "

Figure 3-7. Element of current J1 and local coordinates.
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behaves as a point source. From (3-32)

pu AC

=" rril) ¥
Ay === HPkp) (3-44)
and from (3-26)
AC, @
He = 4j ox
ik AC, cos ¢ H(kp) (3-45)

where H{*! is the Hankel function of order 1. We can translate this to an arbi-
trary origin by replacing p by |p, — p.| and cos ¢ by n - R, where

Pm = Pa
B = 3-46
lpm - pnl [ }

is a unit vector from the source point (x,, y,) to the field point (x_, y.). This
result can be used as an approximation for all m # n. Hence (3-41) becomes,
form # n,

lue % 5 k AC,(+ RHP(KIpa ~ ) (3-47)

The solution is then given by J = [, ]/-'][g.], as discussed in Section 1-3.

For better approximations we can use the methods of Section 3-3 to obtain
more accurate /,,. For example, the pulse approximation to a triangle function,
Fig. 3-4, can be used, with the new [, given by (3-24), Alternatively, the approxi-
mate triangle function can be used for both expansion and testing, giving the
Galerkin result (3-25). Still more accurate evaluation of the /,, may be required
to treat thin conducting sheets when points m and » are close together.

Example. Consider TE plane-wave scattering by conducting cylinders. An im-
pressed uniform plane wave incident from the direction ¢; is given by

H = Ejt:n:.ndﬁ_nindﬂ {3,43}

The g,, are determined from this by (3-40), and the /,, are given by (3-43) and
' (3-47) for a first-order solution. The current is then found by matrix inversion
and multiplication in the usual manner.

e

[/
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Again the scattering cross section ¢ is of interest, given by

F

H(¢)
Hi

o(¢) = 2mp (3-49)

analogous to (3-16). Here H*(¢) is the distant field from J, obtainable by using
the asymptotic formula for H!?! in (3-45), and summing over all elements of
source. This gives [3]

H($) = Kk _|' J(x', y)m « RefHx cosdtysing) g (3-50)
c
where X is given by (3-18). Substituting (3-48) and (3-50) in (3-49), we obtain
k \ \ 1
a(¢) = ry M J(x', y')m « Reft= co2#¥xsind) gy (3-51)
c

which can be evaluated once J is found. The numerical evaluation of (3-51) can
be put in a form similar to (3-20) for computational convenience.

To illustrate a typical result, Fig. 3-8 shows the TE solution for the current
induced on the same elliptic cylinder as in Fig. 3-2 for the TM case. The com-
putations are those of Andreasen [3], and correspond in accuracy to using

1

o
2.5

.0

ﬁ.-l 1.8
El

.o

0.5

0 0.1 0.2 0.3 0.4 0s 0.8 0.7 0.8 09 1.0

5

Figure 3-8. Carrent density on a conducting elliptic cylinder excited by a plane wave, TE case
{(after Andreasen [3]).
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Figure 3-9. Scattered field pattern for a conducting elliptic cylinder excited by a plane
wave, TE case (after Andreasen [3]).

approximations of the type illustrated by Fig. 3-4. Figure 3-9 shows the TE
scattering pattern of the elliptic cylinder, which may be compared to the corre-
sponding TM case of Fig. 3-3. Many other computations are available in the
literature [2,3].

3-8. Alternative Formulation

The TM problem was treated by an E-field formulation in Section 3-2, and the
TE problem was treated by an H-field formulation in Section 3-5. Actually, both
cases can be treated either by an E-field method or an H-field method. To illus-
trate this, we reconsider the TE case by an E-field formulation.

Let Fig. 3-1 represent a conducting cylinder excited by an impressed TE field
E' transverse to z. The scattered field E® is produced by transverse currents J on
C according to the formulas of Section 3-4, For the present problem, these
become

Ef= —jwA — VO (3-52)

A(p) = u {;J(p’}ﬁ(p: p) dl (3-53)
1 —-1dJ i

o0 = §.( 57) o 00 (3-54
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where G is given by (3-31). The boundary condition is the tangential component
of total E vanishes on the conductor; that is,

[Ei + Elonc =0 (3-55)

Defining the operator

o
L) = ~Eflc = [jod + 57 | (3-56)
on C

we can write (3-55) in operational notation as

L{‘” - E:[nﬂ{.‘ (3-57)

Note that the L of (3-56) contains derivatives, which require caveful treatment.

If J is continuous and has a continuous derivative on C, we can solve (3-57)
by the method of moments in a straightforward manner. However, this restric-
tion on J is not convenient for cylinders of arbitrary shape. If J is expanded in
terms of triangle functions, a point-matching solution works reasonably well
unless the field is matched at the breakpoint of the triangles. It J is expanded in
terms of pulse functions, dJ//dl gives impulse functions, and the point-matching
solution becomes questionable. At any rate, it does not converge in the limit as
the number of subsections become infinite. Perhaps the best procedure when
using pulses is either to approximate the operator (Section 1-6), or to extend the
operator (Section 1-7).

An approximate operator is obtained from (3-56) by replacing all derivatives
by difference approximations. The procedure is identical to that given in Chapter
4 for three-dimensional wires, except that the Green's function is different. For
a solution the approximate operator is used with pulse functions for expansion
and point matching for testing. This procedure is presented in detail in Section
4-2, and we summarize only the results here. The transverse current J on C is
represented as

J=Y I.P(l-1) (3-58)

where P(x) are the pulse functions of (1-49). The coefficients I, are given by the
matrix solution (4-21). The [Z] matrix corresponds to the [{] matrix in the
general notation of Section 1-3. The elements Z,, are given by (4-20) with Al,
replaced by AC,, and the y of (4-16) replaced by

W(n, m) = IET::" [, Hkoa) dp (3-59)
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where p,, = +/(x — x,)* + (¥ — ¥.)*. The excitation matrix is given by (4-14),
with Al, replaced by AC,. For a simple solution, we can use approximations
similar to (3-12) and (3-14); that is,

(1

i2
4j ﬁC,Hu Nkpma) msn
w(n, m) = { (3-60)
1 [1_ _._':!1 (}rkﬁf,,)] —n
Fac,| 1R\ ca

where p,, is the distance between the midpoints of AC,, and AC,. For a higher-
order solution, it is convenient to further subdivide C and use the methods of
Section 3-3. For example, expansion functions of the type shown in Fig. 3-4 can
be used, in which case the new Z_, are given by (3-24) or (3-25) with the [;
replaced by Z,;.

Alternatively, we can extend the operator as follows. Define the inner product

(A, B) = fpcA{p}ﬂl;p} dl (3-61)

for which L is self-adjoint, and consider a Galerkin solution. If J_ and J, are two
expansion functions for J, the elements of [/] are given by

b = (S LI,) = ﬁ:-f.{lﬂu.{F} dl (3-62)

Substituting from (3-56), we have

o,
L §c[jm.r_ Ay +J, E] dli (3-63)

where the subscripts n on A and @ denote that they are due to J,. The first term
in the brackets of (3-63) involves no derivatives, and gives no difficulty when
pulse functions are used. The second term in the brackets may be integrated
once by parts with respect to /. Boundary terms vanish if J, is in the domain of
L, and (3-63) reduces to

dl,

Lo jic[jwj_ Ay = =F m_] dl (3-64)

An extended operator can now be defined by specifying that (3-64) apply even
for J not in the original domain of L. This is permissible, because nothing is
changed if J is in the original domain, Equation (3-64) gives convergent results
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if J is expanded in triangles and reasonably good results if pulses are used. How-
ever, in applying (3-64) to pulse functions, it is better to replace dJ/dl by a
difference approximation, in which case convergence is obtained in the limit. It
is of interest to note that the latter procedure leads to precisely the same formulas
as does the extended operator formulation given earlier, if the same approxima-
tions are used for H{?.

3.7. Dieleciric Cylinders

Consider a dielectric cylinder of cross section § in an impressed field E'. The
dielectric permittivity e may be a function of x and y, but not of the axial co-
ordinate z. The impressed field excites polarization currents J in the cylinder,
which produce a scattered field E*. Let L represent the operation relating — E*
to J; that is,

-E'=L{J) (3-65)

The total field is E' + E°, and the polarization current is related to the total
field by

J = jaxe — go)(E' + E) (3-66)
where g, is the permittivity of free space. Combining (3-65) and (3-66), we have

1

——— — 4 i -
jae—e0)" " 67

L) +

within S. In this equation E' is known, and J is the unknown to be determined.
For the case of TM fields, the E and J have only z components, and L is
given by (3-5); that is,

LN =7 [[ 1@)HP Kl — p') s (3-68)

This is an integral operator, and (3-67) can be solved by the method of moments
in a straightforward manner. The simplest procedure is to expand J, in terms of
pulse functions and use a point-matching procedure for testing. The details can
be found in the literature [6]. An evaluation of the /,, is found to be insensitive
to the shape of the subareas As, into which S is divided. Hence the [_, can be
conveniently evaluated by treating the As, as if they were of circular cross
section, which gives a particularly simple solution of excellent accuracy. Figure
3-10 shows the scattering cross section of a cylindrical shell computed by this
method, and compares it to the exact eigenfunction solution. A total of 36 sub-
areas of equal size were used for the matrix solution.
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Figure 3-10. Scattered power pattern for a circular dielectric tube, o = 0.25A, b= 0.30A,
gr == 4, TM case (after Richmond [6]).

In the TE case, L is the more complicated operator
L(J) = jwA(J) + V&(J) (3-69)

where A and @ are the potential integrals

4j A(J) = p j j J(p)HP(k|p — p']) ds’ (3-70)
5

4 o) =1 fI(- =V 3)HPkIp - p1) ds (311)

Because of the derivatives in (3-69) and (3-71), more care is necessary in applying
the method of moments. Strictly speaking, pulse functions are not in the domain
of L, and hence should not be used for expanding J. However, if they are used
in conjunction with a point-matching procedure, usable results can be obtained
[7]. Figure 3-11 shows the scattering cross section of the cylindrical shell com-
puted by this procedure using 38 subareas, and compares it to the eigenfunction
solution. Note that, because of the crude treatment of the problem, the error is
appreciable. Since /o is a continuous linear functional of J, we should expect
even more error in J itself. Furthermore, we should not expect the solution to
converge to the exact solution as the number of subareas is increased. More
accurate computations can be obtained by using expansion functions in the
domain of L. Alternatively, we can continue to use pulse functidns with either
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Figure 3-11. Seattered power pattern for a circular dielectric tube, a = 0.254, b= 0.304,
£y = 4, TE case (after Richmond [T]).

an approximate L or an extended L, as discussed in Section 3-6. If properly
done, TE solutions of accuracy comparable to that for TM solutions should be
obtainable.

If the cylinder has a permeability u different from pu, (that of free space),
but & = &, the problem is dual to that just treated. The appropriate equation is”
dual to (3-67), that is, obtained from (3-67) by replacing & by u, E by H, and
J by M (magnetic current). Solution proceeds in the same manner as for the di-
electric case. If the cylinder has both u different from p; and & different from &,
the problem is more difficult. It involves a combination of (3-67) and its dual
equation. We shall discuss this further in Section 5-7.

If the cylinder is homogeneous in both £ and u, the problem can be formu-
lated in terms of E and H on the contour C which bounds the cylinder [4]. This
has the advantage of reducing the problem from two dimensions to one dimen-
sion; hence fewer subsections are needed for a solution. However, the procedure
cannot be applied to inhomogeneous cylinders. g
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